
Visualizing speciation rates with IDW interpolation

Weston Testo

03 May 2021

This walkthrough details an approach to visualize spatial distribution of speciation rates via interpolation.
Later on, I’ll be using two datasets on the Neotropical lycophyte genus Phlegmariurus: speciation rate
estimates from Testo et al. (2019) and ~3500 specimen occurrence records of 90+ species from GBIF. You
can access these data and script in this repository. Though we’ll be focusing on speciation rates, this approach
can be applied to any number of species traits.

Before we get started with the data, here’s some context for this work. I was inspired to work on this after
reading this really nice paper on orchids by Oscar Pérez Escobar and colleagues in New Phytologist in 2017.
In that paper, they generated speciation rates from a time-calibrated phylogeny, associated those rates
with specimen-based occurrence records, and used inverse-distance weighted (IDW) spatial interpolation in
ArcMap to “fill in the gaps” between occurrence points. For a nice explanation of how spatial interpolation
works, see this nice post by Manny Gimond.

Here, I am re-envisioned Pérez Escobar et al.’s approach with implementation in R. This code mostly relies
on the sf package for manipulation of spatial data because I like the data structure used by the package
and its operations are (to me) intuitive. Of course, you can carry out the same analysis using sp based
packages, if that is your preference. The interpolation will be done using the gstat package.

Why do it this way?

• Implementation in R for improved reproducibility and flexibility

– Can be run “out of the box” at any spatial extent and re-run easily

• Speed

– Depending on scale, atleast an order of magnitude faster than QGIS/ArcGIS

• Realistic interpolation extent

– By making a buffered clipping mask, we avoid unrealistic visualizations

Why use a buffer to make a clipping mask?

A slight diversion Because the whole point of interpolation is to estimate values between observed
points, it can produce biologically unrealistic results in situations where your study group is not distributed
throughout the extent of the interpolation area. This can be overcome by employing a clipping mask, as
we’ll see.

Consider the following example:

1

https://static1.squarespace.com/static/60f01ce3590ad927352e44af/t/60f55aba783e880aac979e4f/1626692285740/Testo2019_NewPhyt.pdf
https://nph.onlinelibrary.wiley.com/doi/full/10.1111/nph.14629
https://mgimond.github.io/Spatial/spatial-interpolation.html

The following map shows the distribution of Espeletia, a genus in the sunflower family that is only found
at high elevations in the northern Andes of South America. Note:These data are straight from GBIF and
uncleaned, so there are a few errors, like that point in the Chocó of western Colombia.

 5°S

 0°

 5°N

10°N

15°N

80°W 75°W 70°W 65°W
Longitude

La
tit

ud
e

As you can see, the distribution of Espeletia is restricted to high elevation habitats in the Andes and
associated mountain ranges. Intervening lowland areas (like the Middle Magdalena region in north-central
Colombia) are devoid of the genus.

Next, we can see the same map but with the points colored by speciation rate. To keep things simple, I have
simply simulated speciation rates with a normal distribution centered on 0.3 events-MY.

2

 5°S

 0°

 5°N

10°N

15°N

80°W 75°W 70°W 65°W
Longitude

La
tit

ud
e

speciation

0.25

0.50

0.75

This is interesting, but interpolation of speciation rate estimates between occurrence points would help us
to overcome gaps in sampling and potentially make for a more interesting and informative visualization.
However, if we carry out interpolation across the current map extent, we get this:

3

 5°S

 0°

 5°N

10°N

15°N

80°W 75°W 70°W 65°W
Longitude

La
tit

ud
e

0.25

0.30

0.35

0.40

Speciation Rate

This looks terrible, and for good reason – we are interpolating speciation rates across areas where Espeletia
doesn’t occur. In addition to looking terrible, this visualization just doesn’t make much sense – areas where
there are no Espeletia are shown as having relatively high speciation rates. This is caused by interpolation
of rates over areas outside the range of the genus. While this is a rather dramatic case, we can easily imagine
lots of scenarios where this could happen.

This is where a clipping mask comes in handy. If we apply a circular buffer of 50 km diameter around each
occurrence point and use that to clip the extent of the interpolation, we get a result that makes sense:

4

 5°S

 0°

 5°N

10°N

15°N

80°W 75°W 70°W 65°W
Longitude

La
tit

ud
e

0.25

0.30

0.35

0.40

Speciation Rate

Now that we’ve settled the general approach, let’s try this with real data.

Step-by-step walkthrough (with real data)

Loading & checking data First, we’ll want to load the packages we’ll be using:

library(raster)
library(sp)
library(ggplot2)
library(sf)
library(dplyr)
library(rnaturalearth)
library(scico)
library(smoothr)
library(gstat)

As I mentioned previously, sf and gstat will be doing a lot of the heavy lifting here, but several of the
other packages help with data manipulation and visualization. In particular, I want to point out Thomas
Lin Pedersen’s scico package, which accesses the scico color palettes developed by Fabio Crameri. These
are perceptually uniform and colorblind safe color palettes; for more info, see this page.

Next, we’ll set a projection for the project (in this case, a Behrmann equal-area projection) and read in a
world map using the rnaturalearth package.

5

https://www.fabiocrameri.ch/colourmaps/

behrmann<-"+proj=cea +lon_0=0 +lat_ts=30 +x_0=0 +y_0=0
+datum=WGS84 +units=m +no_defs +ellps=WGS84 +towgs84=0,0,0"

world_temp<-ne_countries(returnclass = "sf")
world<-st_transform(world_temp, crs = behrmann)

Now we’ll load the CSV with our occurrence and speciation rate data. The lat/long data are in decimal
degrees (WGS84).

points_temp<-read.csv("Phlegmariurus_occ.csv")

head(points_temp)

Taxon SpeciesGroup decimalLatitude decimalLongitude Rate
1 Phlegmariurus acerosus acerosus 15.74220 -90.17920 0.142
2 Phlegmariurus acerosus acerosus 14.66666 -88.70000 0.142
3 Phlegmariurus acerosus acerosus 14.53333 -88.66666 0.142
4 Phlegmariurus acerosus acerosus 14.55000 -88.66666 0.142
5 Phlegmariurus acerosus acerosus 15.08330 -88.33330 0.142
6 Phlegmariurus acerosus acerosus 10.30000 -84.75000 0.142

Since we’ll be working with the sf package, we’ll convert our data to a Simple Features object, reproject the
coordinates, and create a bounding box that extends 500km beyond our points (we’ll use this to define the
extent of our plots). Note that in the first line of code we are designating coordinates as – this corresponds
to the column numbers of out our longitude and latitude data, respectively (see above).

points_temp<-st_as_sf(points_temp, coords = c(4,3),
crs= ’+proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,0,0’)

points<-st_transform(points_temp, crs = behrmann)

limit <- st_buffer(points, dist = 500000) %>% st_bbox()

A quick check to make sure our reprojection looks OK –

6

40°S

30°S

20°S

10°S

 0°

10°N

20°N

30°N

100°W 80°W 60°W 40°W
Longitude

La
tit

ud
e

Species Group

acerosus

aqualupianus

brongniartii

crassus

dichotomus

hartwegianus

lindenii

linifolius

reflexus

ruber

taxifolius

This looks right. . . Phlegmariurus is well-represented in the Andes, southeastern Brazil, and Mesoamerica.
Let’s take a quick look at the distribution of speciation rates by simply coloring occurrence points by tip rates.

7

40°S

30°S

20°S

10°S

 0°

10°N

20°N

30°N

100°W 80°W 60°W 40°W
Longitude

La
tit

ud
e

Rate

0.10

0.15

0.20

0.25

0.30

As we can see, the most rapidly diversifying lineages are principally distributed in the northern and central
Andes. This makes sense, given the rapid speciation in the Phlegmariurus crassus species group in páramo
and puna habitats in this region. Now we have a general sense of what to expect from interpolation of these
values.

Creating a buffer Let’s start by creating our clipping mask that will define the bounds of our interpo-
lation. We’ll do this by creating circular buffers of 100km around each occurrence point, fusing overlapping
buffers together, clipping any buffer area in the ocean, and smoothing the edges of the buffer. The size of
the buffer can be modified to fit the region/taxon you are working with. Note: the 1m buffer is to avoid
potential problems with the geometry of the polygon.

buffer<-st_buffer(points$geometry, dist = 50000, nQuadSegs = 50) %>%
st_union()%>%
smooth(method="ksmooth", smoothness=40) %>%
st_intersection(world) %>%
st_buffer(dist=1) %>%
st_union()

8

40°S

30°S

20°S

10°S

 0°

10°N

20°N

30°N

100°W 80°W 60°W 40°W
Longitude

La
tit

ud
e

This looks pretty good overall. Most of the range has been fused into a small number of contiguous polygons,
and there are a few outlying circular buffers. If we wanted to keep just the “core range” and drop the polygons
defined by single points, we can do some pretty simple housekeeping based on that fact that we can figure
out the approximate size of the isolated polygons using some basic geometry: A = π ∗ r2. . .

A = 3.14*(50000^2) ## approx. area of single-point buffers with 50km radius

bufferManyParts<-buffer %>% st_cast("POLYGON") ## make multiple polygons

bufferLarge <- bufferManyParts[as.numeric(st_area(bufferManyParts)) > A]

bufferLarge <- bufferLarge %>% st_cast("MULTIPOLYGON")

The result is rather similar to the above plot, but perhaps a bit “cleaner”.

9

40°S

30°S

20°S

10°S

 0°

10°N

20°N

30°N

100°W 80°W 60°W 40°W
Longitude

La
tit

ud
e

For the purposes of this walkthrough, we’ll use the untrimmed buffer from here on out, as we want to retain
as much information about the clade’s distribution as possible. Our next step is to rasterize the buffer so
we can easily use it later to clip the interpolation output.

buffer_sp <- as(buffer, "Spatial")

Creating a grid for interpolation Because the output of IDW interpolation is a raster, we need to make
a grid to form the basis for that raster. Each grid cell will correspond to a pixel in the raster, so our choice
of cell size will define the resolution of the final raster. Note that increasing the number of grid cells will
mean that there will be more “blank” cells to estimate values for, and the resulting raster file will be larger.
Figuring out the right balance between resolution and runtime/file size might take some experimentation.

Here, we will use a cell size of 5 x 5km. Because the size grid is defined by the extents of the buffer, the
dimensions of the grid will vary depending on your study area. The Z field added to the grid at the end will
hold the interpolated speciation rates. After the grid is created, we’ll rasterize it.

grid <- buffer %>%
st_bbox() %>% ## create bounding box for limit of grid
st_as_sfc() %>%
st_make_grid(cellsize = c(5000, 5000), ## cell size (in meters)

what = "centers") %>%
st_as_sf() %>%
cbind(., st_coordinates(.)) %>%

10

st_drop_geometry() %>%
mutate(Z = 0) ## additional field for holding rate values

rasterGrid <- grid %>%
raster::rasterFromXYZ(

crs = behrmann)

Interpolating rates Now that we have created a grid, we can carry out the interpolation. First, we
need to develop interpolation model, which we will do in the gstats package. This is relatively simple, and
involves four parts:

1. A formula (in our case, just the variable of interest: Rate ~ 1)
2. The data source (in our case, the object points)
3. The min (nmin) and max (nmax) number of points to use for interpolation of a given cell
4. Inverse distance power (idp), which specifies the strength of the local effect. idp = 0 means there is

no effect of distance, higher values (e.g., idp = 3 indicate a strong effect).

IDW_model <- gstat::gstat(
formula = Rate ~ 1, ## change name as needed based on your data
data = as(points, "Spatial"),
nmax = 50, nmin = 10,
set = list(idp = 0.5))

It is worth experimenting with idp and nmin/nmax is good idea to get a sense of how they affect your
results. It is possible to validate the model using LOOCV or other methods, but that is beyond the scope
of this walkthrough.

Now that we have defined the model, we can run the interpolation:

IDW_output <- interpolate(rasterGrid, IDW_model)

We can use the buffer to clip the extent of the interpolation and convert the resulting raster to a tibble so
we can visualize it.

IDW_output_trimmed<-mask(IDW_output, buffer_sp)

IDW_df <- rasterToPoints(IDW_output_trimmed) %>% as_tibble()
colnames(IDW_df) <- c("X", "Y", "Z")

Now we have a tibble with three columns: X, Y, Z. The first two columns represent the coordinates of each
cell, and the Z column shows the associated speciation rate. This can easily be be visualized in ggplot2
using the geom_tile aesthetic. For this dataset, the tibble is large – more than 110k rows of data – let’s
look at a random subset of cells:

sample_n(IDW_df,15)

A tibble: 15 x 3
X Y Z

11

<dbl> <dbl> <dbl>
1 -6894170. 1060653. 0.179
2 -4164170. -2774347. 0.156
3 -4259170. -2839347. 0.152
4 -5799170. -1884347. 0.149
5 -7564170. -949347. 0.188
6 -5029170. 585653. 0.135
7 -7664170. -224347. 0.190
8 -8064170. 1570653. 0.147
9 -9849170. 2490653. 0.155
10 -7199170. 520653. 0.193
11 -7064170. 1325653. 0.192
12 -6749170. 2355653. 0.165
13 -4574170. -2849347. 0.176
14 -7334170. 860653. 0.166
15 -6294170. -3349347. 0.166

Finally, we can visualize the output:

40°S

30°S

20°S

10°S

 0°

10°N

20°N

30°N

100°W 80°W 60°W 40°W
Longitude

La
tit

ud
e

0.12

0.15

0.18

0.21

Speciation Rate

Things look as we expected – high rates in the tropical Andes, much like we saw in the point-based
figure previously. But, this gives a much more complete story and looks pretty nice. Along with be-
ing an informative figure in itself, there are a lot of data here than can be extracted for downstream analyses.

Enjoy! If you have any questions or suggestions, open an issue or email me a westontesto at gmail.com.

12

	Step-by-step walkthrough (with real data)

