
The rise of the Andes promoted rapid diversification in
Neotropical Phlegmariurus (Lycopodiaceae)

Weston L. Testo1 , Emily Sessa1 and David S. Barrington2

1Department of Biology, University of Florida, Box 118525, Gainesville, FL 32611, USA; 2Department of Plant Biology, University of Vermont, 63 Carrigan Drive, Burlington, VT 05405,

USA

Author for correspondence:
Weston L. Testo

Tel: +1 802 338 7174
Email: wtesto@ufl.edu

Received: 11 September 2018

Accepted: 10 October 2018

New Phytologist (2019) 222: 604–613
doi: 10.1111/nph.15544

Key words: Andes, biodiversity hotspot,
clubmosses, diversification, lycophytes,
phylogeny.

Summary

� Tropical mountains are disproportionately biodiverse relative to their surface area, but the

processes underlying their exceptional diversity require further study. Here, we use compara-

tive phylogenetic methods to examine the impact of the Andean orogeny on the diversifica-

tion of Neotropical Phlegmariurus, a species-rich lycophyte clade.
� We generated a time-calibrated phylogeny of 105 species of Neotropical Phlegmariurus

and estimated lineage diversification rates. We tested for correlations between lineage diversi-

fication rates and species range size, niche breadth, elevational range amplitude, and mean

elevation of occurrence. A recently developed macroevolutionary model was used to incorpo-

rate geological data and test for an association between diversification rates and the Andean

uplift.
� Diversification rates of Neotropical Phlegmariurus are negatively correlated with species

range size and positively correlated with mean elevation of species occurrence. The rise of the

Andes is strongly associated with increased rates of diversification in Neotropical

Phlegmariurus during the last 10Myr.
� Our study demonstrates the importance of mountain-building events and geographical iso-

lation of alpine populations as drivers of rapid diversification, even in spore-dispersed plants.

This work also highlights the usefulness of combined phylogenetic, geological and ecological

datasets, and the promise of comparative environment-dependent diversification models in

better understanding the evolutionary origins of biodiversity.

Introduction

Mountains harbor a disproportionate share of Earth’s biodiver-
sity (Humboldt & Bonpland, 1807; Hoorn et al., 2013;
Antonelli, 2015; Hughes & Atchison, 2015; Lagomarsino et al.,
2016; Xing & Ree, 2017). Although they cover approximately
one-eighth of Earth’s land surface, mountains host approximately
one-third of terrestrial species (Spehn et al., 2012) and have sup-
ported exceptional species radiations (Hughes & Eastwood,
2006; McGuire et al., 2007; Schwery et al., 2015; Lagomarsino
et al., 2016; Xing & Ree, 2017) in lineages across the Tree of
Life. Given the exceptional species diversity encountered in the
world’s mountains, developing a thorough understanding of the
factors driving the diversification of biotic lineages in these
regions is an important goal of evolutionary biologists. Method-
ological advances in comparative phylogenetics and historical
biogeography in recent years have improved our capability to
identify the relative roles of biotic and abiotic factors as drivers of
evolutionary radiations (Matzke, 2013; Morlon, 2014), yet our
understanding of the timing and mode of diversification in mon-
tane systems remains mostly confined to a few groups of organ-
isms, such as lizards (Doan, 2003; Elias et al., 2009), birds

(Chaves et al., 2011; Fjelds�a et al., 2012; McGuire et al., 2014),
butterflies (Casner & Pyrcz, 2010; Strutzenberger & Fiedler,
2011; Chazot et al., 2016; De-Silva et al., 2016 Nattier et al.,
2017) and flowering plants (Hughes & Eastwood, 2006;
Antonelli et al., 2009; Lagomarsino et al., 2016; Diazgranados &
Barber, 2017; N€urk et al., 2018; Pouchon et al., 2018).

Andean South America is among the most important geo-
graphical regions in which to study the diversification of
montane lineages. The tropical Andes, which span western
South America from Venezuela to northern Argentina and
Chile, are of particular interest for researchers studying many
groups of organisms. This area is the most species-rich region
on Earth, with > 45 000 plant and 3400 vertebrate species;
nearly half of these are found nowhere else on Earth (Myers
et al., 2000). The accumulation of this unparalleled diversity
is due in large part to major evolutionary radiations that have
occurred in a broad array of Andean lineages, including
groups of fungi (Leavitt et al., 2012; L€ucking et al., 2014),
animals (Garcı́a-Moreno et al., 1999; Doan, 2003; Elias et al.,
2009; Chaves et al., 2011; De-Silva et al., 2016) and plants
(Hughes & Eastwood, 2006; Antonelli et al., 2009; Luebert
& Weigend, 2014; Lagomarsino et al., 2016). These
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radiations are particularly striking given that most are recent
and ongoing, having started during the Pliocene and Pleis-
tocene epochs (Madri~n�an et al., 2013) in concert with the
rapid uplift of the Andes over the past 10Myr (Gregory-
Wodzicki, 2000; Garzione et al., 2008). Even though the tim-
ing and geographical pattern of the Andean uplift remain
topics of considerable debate, it is evident that the Andean
orogeny, along with climatic fluctuations and biotic interac-
tions, has driven some of the fastest diversification rates
known (Madri~n�an et al., 2013; Lagomarsino et al., 2016).

The number of focused studies on the diversification of
montane Andean lineages has increased substantially over the
past decade; however, most work has focused on a select few
taxonomic groups. By contrast, the evolutionary histories of
other prominent tropical Andean groups, such as ferns
(Kreier et al., 2008; McHenry & Barrington, 2014; S�anchez-
Baracaldo & Thomas, 2014) and lichens (L€ucking et al.,
2014) have received little attention; yet others, including
lycophytes and bryophytes, remain unstudied within a phylo-
genetic context. To better understand how the Andean uplift
has impacted the diversification of the region’s biota,
increased focus on understudied groups, especially those that
differ in life-history strategies and dispersal ability, is needed.
Here, we address this gap in our knowledge by examining
the role of the Andean uplift as a driver of diversification in
the species-rich lycophyte genus Phlegmariurus (Lycopodi-
aceae).

The Neotropical clade of Phlegmariurus is an excellent
study system for examining the relationship between the
Andean orogeny and species diversification in spore-dispersed
vascular plants. This clade comprises an estimated 150 species
and includes species that are remarkably diverse both mor-
phologically and ecologically (Øllgaard, 1992; Field et al.,
2016). Neotropical Phlegmariurus is distributed from Florida
and Mexico to Argentina and southeastern Brazil and can be
found from sea level to at least 5000 m above sea level (asl),
but is most diverse in the northern Andes (Øllgaard, 1995),
where most species are either epiphytes in humid montane
forests or terrestrial herbs in alpine grasslands. The presence
of a large (> 60 species), monophyletic group of terrestrial
taxa restricted to geologically young alpine habitats of the
Andes and adjacent regions (Øllgaard, 1992) suggests that
the group may have undergone a recent and rapid burst of
diversification, thus providing a useful comparison to
angiosperm genera, whose diversification histories may have
different principal drivers (Luebert & Weigend, 2014). In
addition, this group provides a useful system for examining
the impact of propagule size and biotic interactions on diver-
sification patterns in montane systems, as Phlegmariurus
species are spore-dispersed and do not engage in obvious
biotic interactions during reproduction, like most
angiosperms. Using a dated phylogeny, species distribution
information, and both climate and geological data, we apply
comparative phylogenetic models to investigate the evolution-
ary history of Neotropical Phlegmariurus within the context
of the Andean orogeny.

Materials and Methods

Taxon sampling, DNA extraction, amplification, and
sequencing

We generated sequence data from 105 species of Neotropical
Phlegmariurus, including members of all known species groups
and representing c. 70% of known diversity in the clade
(Øllgaard, 1992; Testo et al., 2018b); matching those sampled in
a recent study on species group delimitation in the genus (Testo
et al., 2018b). Total genomic DNA was extracted from silica-
dried leaf material or herbarium specimens using a standard cetyl
trimethylammonium bromide (CTAB) extraction protocol
(Doyle & Doyle, 1987). PCR was performed in 25-ll mixtures
of 12.5 ll Bullseye Taq mix (MIDSCI, St Louis, MO, USA),
9 ll water, 1.25 ll each of 10 mM forward and reverse primers,
and 1 ll of 10–20 ng ll�1 DNA. We amplified six regions of
chloroplast DNA (rbcL, psbA-trnH, rps4-trnS, trnL, trnL-trnF
and trnP-petG IGS) following the conditions outlined in Testo
et al. (2018b). PCR products were purified using shrimp alkaline
phosphatase and then diluted to 2 ng ll�1 before sequencing. We
sequenced all PCR products in both forward and reverse direc-
tions using BigDye chemistry on an ABI 3730 xl DNA analyzer
at Genewiz, South Plainfield, NJ, USA. Sequences were assem-
bled in GENEIOUS 10.0.3 (Biomatters Ltd, Auckland, New
Zealand) and were visually inspected and manually edited as
needed. Voucher information and GenBank accession numbers
are provided in Supporting Information Table S1.

Divergence time analysis

We performed sequence alignment using the MAFFT (Katoh
et al., 2002) plugin in GENEIOUS with a gap-open penalty of
1.1–1.4 and an offset value of 0.123. We used JMODELTEST 2
(Darriba et al., 2012) on each marker partition to identify
best-fitting substitution models (see Table S2); the concatenated
six-marker dataset was used for all subsequent analyses.

We performed divergence-time estimation analyses using BEAST

2.4.5 (Bouckaert et al., 2014) on the Cipres Science Gateway
portal (Miller et al., 2010). For all analyses, the matrix was parti-
tioned by marker, and substitution models were assigned to each
partition using the results of our model test analysis; trees were
linked and rates were left unlinked. As no reliable fossils are avail-
able to provide a minimum age estimate of this clade, we used a
secondary calibration from a recently published dated phylogeny
of the Lycopodiaceae (Testo et al., 2018a) to calibrate the crown
age of Neotropical Phlegmariurus at 42.7 Myr ago (Ma); the cali-
bration age is similar to that recovered by Bauret et al. (2018) in
their study of Malagasy Phlegmariurus. This calibration was
defined with a normal distribution centered on 42.7Ma and
given a standard deviation of 5, which placed the center 95% of
probability space for the node age at 39–55Ma. A birth–death
tree prior was selected with a uniform prior range 0–10 for speci-
ation rate and 0–1 for relative extinction rate, with starting values
of 1.0 for speciation and 0.5 for relative extinction. We per-
formed two separate Markov chain Monte Carlo (MCMC) runs
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of 50 million generations and sampled every 20 000 generations,
resulting in 2500 trees per run and 5000 trees in total. The result-
ing log files were inspected for convergence and adequate sam-
pling using TRACER 1.6 (Drummond & Rambaut, 2007); ESS
values all exceeded 500 and the first 20% of trees were discarded
as burn-in. A maximum credibility tree was generated from the
remaining 4000 trees.

Diversification rate estimation

We estimated lineage diversification rates using BAMM 2.5.0
(Rabosky, 2014), which uses a reversible-jump MCMC to sample
a large number of possible diversification regimes from a given
time-calibrated phylogeny. Like other lineage diversification mod-
els, the BAMM approach has come under criticism (Moore et al.,
2016); however, the model appears to perform well when appro-
priately parameterized for the dataset being analyzed (Rabosky
et al., 2017). We acknowledge the limitations of this and other
methods of diversification rate estimation and follow the best prac-
tices described by the authors of the program. The MCMC was
run for 100 million generations and sampled every 40 000 genera-
tions. Prior values were selected using the ‘setBAMMpriors’
function; we accounted for incomplete taxon sampling by provid-
ing a sampling file with estimated sampling proportions for
each of the eleven species groups in the clade as defined by Testo
et al. (2018b). Post-run analyses were performed using the
‘BAMMTOOLS’ (Rabosky et al., 2014) package in R 3.4.2 (R Core
Team, 2014). The initial 10% of the MCMC run was discarded
as burn-in, and the remaining data were assessed for convergence
and ESS values > 200. Net diversification rates were obtained for
all taxa in the phylogeny using the ‘getTipRates’ function; these
values represent the posterior distribution of rates at the tip of the
tree, as described by Rabosky et al. (2015). To compare diversifica-
tion rates of species groups in the genus, mean clade rates were
extracted using the ‘getCladeRates’ function.

Species distribution data and association with
diversification rates

In order to estimate features of species distributions and to esti-
mate niche space, we obtained georeferenced locality data for
4887 collections of Neotropical Phlegmariurus. Specimen data
were obtained from the GBIF and Tropicos databases and from
examination of herbarium material at AAU, COL, FMB, GH,
HUA, MEXU, NY, PSO and VT. All collection data were
reviewed, and both duplicate collections, and specimens from
beyond the known range of a species were visually examined and,
if misidentified, deleted. Following deletion of erroneous data,
2974 collections remained, ranging from two for Phlegmariurus
tryoniorum to 324 for Phlegmariurus reflexus. In total, we esti-
mated four features of species distributions and niche occupancy:
mean elevation, elevational range, species range size, and niche
breadth (Table S3). Mean elevation and elevational range were
calculated from values provided on collection labels or estimated
using lat/long coordinates and the ‘elevation’ function in R/RGBIF
(Chamberlain & Boettiger, 2018). Range size was estimated by

applying a 5 km buffer around each locality point using the
‘gBuffer’ function in the R/RGEOS (Bivand et al., 2017), following
the methodology of Anacker & Strauss (2014). To calculate
niche breadth, we calculated niche models for each species using
locality data and climate layers obtained from the CHELSA
(Karger et al., 2017) dataset. Highly correlated variables were
identified using Pearson’s correlation coefficient; all variables
with coefficients > 0.6 were removed. The remaining four most
predicative bioclimatic variables were then used to estimate niche
breadth; these were: annual temperature, annual precipitation,
seasonality of temperature and seasonality of precipitation. Niche
breadth was calculated using ENMTOOLS (Warren et al., 2010)
using Levin’ (1968) B metric. The correlations between these
variables and species diversification rates were examined with
phylogenetically independent contrasts (Felsenstein, 1985)
implemented in the R/ape (Paradis et al., 2004); range-size data
were log-transformed before analysis to overcome their skewed
distribution. We also examined the correlation of each of these
niche/distribution variables using the same method. Trait
variables were plotted on the phylogeny of Neotropical
Phlegmariurus using the ‘plotTree.wBars’ function in PHYTOOLS

(Revell, 2012).

Orogeny-dependent diversification

We tested for an association between the uplift of the Andes and
diversification rates in Neotropical Phlegmariurus by comparing a
series of time-dependent diversification models that allow specia-
tion and/or extinction to vary with the paleoelevation of the
Andes against constant diversification null models. Paleoelevation
data were obtained from the list compiled by Lagomarsino et al.
(2016), which is based on historical elevation estimates from
Garzione et al. (2006, 2008, 2014), Ehlers & Poulsen (2009) and
Leier et al. (2013). These data are available in Table S4. A
smoothing line fitting these data was generated using R/PSPLINE

and this line was used to provide the best estimate of Andean
paleoelevation at any given time point. A total of eight paleoele-
vation-dependent diversification models were applied; four with
exponential dependency and four with linear dependency. Two
null models were also generated: a Yule model and a constant-
rate birth–death model. Models were compared and the best-
fitting model was selected using the corrected Akaike Information
Criterion. These models were implemented in R/RPANDA (Mor-
lon et al., 2016) and are based on the environment-dependent
birth–death model described by Condamine et al. (2013). All
models, including parameters and comparison metrics, are pro-
vided in Table 1. Results for PICs among trait/niche variables are
provided in Table S5.

In order to visualize the accumulation of lineage diversity in
Neotropical Phlegmariurus through time and compare that rate
to patterns of lineage accumulation expected under constant-rate
null models, we generated a log-lineage-through-time plot (LTT)
for the time-calibrated Phlegmariurus phylogeny as well as for
two simulated trees of the same age and taxon richness. One sim-
ulated tree was generated under a Yule model (birth rate = 1,
death rate = 0), and another was generated under a birth–death
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model (birth rate = 1, death rate = 0.5). Simulated trees were gen-
erated using the ‘LTT’ function and all LTT plots were generated
using the ‘ltt.plot’ function in the ‘APE’ package in R (Paradis
et al., 2004).

Results

Our phylogeny resolved a mean crown age of 45.8Ma (95%
HPD 41.2–47.7Ma) for Neotropical Phlegmariurus, with most
species groups beginning to diversify in the Miocene (Figs 1, S1).
Our tree topology and clade ages are similar to those reported by
Testo et al. (2018a) in a recent dated phylogeny of the Lycopodi-
aceae. Net diversification tip rates varied from 0.097 events
Myr�1 for P. ericifolius to 0.308 events Myr�1 for P. columnaris;
rates were generally lowest in members of the P. aqualupianus
group and highest in the P. crassus group (Tables S6, S7). The
fastest diversifying and most species-rich clades in the genus
tend to be present at high elevations (Fig. 2); however, there
are exceptions to this pattern, such as the monotypic high-
elevation P. lindenii group. Phylogenetic independent contrasts
indicated a significant negative correlation between diversifica-
tion rates and species range size (Figs 3a, 4a), no significant
correlations between diversification rates and both elevational
range and niche breadth (Figs 3b–c, 4b–c), and a significant
positive correlation between diversification rate and mean
elevation (Figs 3d, 4d).

The LTT plots indicate that lineage accumulation in Neotrop-
ical Phlegmariurus occurred at a slower rate than would be
expected under either of the constant-rate simulations (Fig. 5)
until the late Miocene (c. 10Ma), when diversity began to rapidly
accumulate. The timing of this shift corresponds closely with our
paleoelevation estimates (Fig. 5, green dotted line) of the time
point at which the Andes reached the approximate elevation of
the modern forest/p�aramo boundary, as well as the crown age of
the species-rich alpine P. crassus species group (Fig. 5, in red).
Our BAMM results also indicate a well-supported shift in net
diversification rates corresponding to the stem lineage of the
P. crassus group (marginal probability = 0.32) or to the stem lin-
eage of the P. crassus and P. reflexus groups combined (marginal
probability = 0.19).

Comparison of ten time-dependent diversification models
indicated that the best-fit diversification model included a

positive, exponential association between speciation rates and
the paleoelevation of the Andes, with no extinction (�loge L =
�298.362, AICc = 600.84). As shown in Table 1, all paleoeleva-
tion-dependent models outperformed both the Yule and birth–
death null models.

Discussion

By examining the drivers of diversification in Neotropical
Phlegmariurus, we partly address this taxonomic unevenness in
our knowledge and provide a first step towards understanding the
complex evolutionary history of one of the most diverse groups
of spore-dispersed vascular plants in the tropical Andes. The evo-
lutionary history of Neotropical Phlegmariurus closely mirrors
those of other principally Andean groups, with lineage diversifica-
tion tracking mountain uplift (Doan, 2003; Hughes & East-
wood, 2006 Antonelli et al., 2009). Unlike these studies, which
principally discuss diversification within the context of species
distributions in the Andes, we explicitly tested for an association
between the rise of the Andes and lineage diversification in their
study group. We used a paleoenvironment-dependent diversifica-
tion model developed by Condamine et al. (2013), recently used
in a study of the radiation of Andean bellflowers (Lagomarsino
et al., 2016) to detect such an association in Neotropical
Phlegmariurus, the presence of which was strongly supported by
our analyses (Table 1). The correlation between mountain build-
ing and diversification rates in Neotropical Phlegmariurus is not
surprising given the high species richness at high elevations in the
Andes, but this insight is important because it represents one of
the few attempts to explicitly test for a relationship between lin-
eage diversification and a paleoenvironmental variable. In the case
of Neotropical Phlegmariurus, a sustained increase in diversifica-
tion rates occurred around the late Miocene, coincident with the
start of exceptionally rapid uplift in the Andes (Garzione et al.,
2008; Hoorn et al., 2013) and the expansion of montane forests
in the region. This burst of diversification matches the timing of
an important event in the evolutionary history of Neotropical
Phlegmariurus: a transition to terrestrial growth in the clade com-
prising the P. reflexus and P. crassus species groups (Testo et al.,
2018b). Thus, rapid diversification among terrestrial Phlegmariurus
within the last 10Myr appears to have been driven by increased
ecological opportunity as novel habitats became available, and by

Table 1 Comparison of paleoelevation-dependent diversification models implemented in R/RPANDA.

Models
Mode of
dependency # Parameters Log L AICc DAICc Lambda Mu

1 k with elev., no l Exponential 2 �298.36 600.84 0.00 0.04 –
2 k with elev., l constant Exponential 3 �298.36 602.96 2.12 0.04 0.00
3 k with elev., no l Linear 2 �299.93 603.98 3.14 0.10 –
4 k and l with elev. Exponential 4 �298.10 604.60 3.75 0.04 0.06
5 k with elev., l constant Linear 3 �299.94 606.12 5.28 0.10 0.00
6 k constant, l with elev. Linear 3 �299.93 606.35 5.51 0.03 0.01
7 k and l with elev. Linear 4 �299.93 608.26 7.42 0.10 0.04
8 k constant, l with elev. Exponential 3 �308.22 622.68 21.84 0.20 0.09
9 k and l constant – 2 �322.75 644.58 43.74 0.09 0.00
10 k constant, no l – 1 �356.57 659.86 59.02 0.07 –
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the proliferation of discontinuous alpine habitats as the uplift
continued.

The strong negative correlation between diversification rates
and species range size (and negative correlation between range
size and mean elevation of species’ distributions) highlights

another important feature of this recent diversification: geo-
graphic isolation of populations among patchily distributed
p�aramo habitats. Given the complex topography of the Andes
and the restriction of alpine habitats to high (generally
> 3200 m asl) elevations, p�aramos are generally small and

Fig. 1 Dated phylogeny of Neotropical Phlegmariurus, showing the timing of diversification of the clade and the relationships of the species groups
designated by Testo et al. (2018b). Support values are provided for all backbone nodes; support values are Bayesian posterior probabilities. Node bars
provided are 95% HPD intervals for mean node ages. Representative taxa from three species groups are shown.

Fig. 2 Elevation and diversity in species groups of Neotropical Phlegmariurus. Circles represent species groups in the genus, circle size is relative to group
species richness. Species group elevation and net diversification rate values are means obtained from all representatives in the group that were included in
this study. asl, above sea level.
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(a) (b)

(c) (d)

Fig. 3 Phylogeny of Neotropical Phlegmariurus with diversification rates and (a) range size, (b) elevational range, (c) niche breadth and (d) mean elevation
provided for each species. Bar lengths represent values for given species attributes; bar colors represents species net diversification rate (NDR). asl, above
sea level.

(a) (b)

(c) (d)

Fig. 4 Association between net diversification rates and (a) range size, (b) elevational range, (c) niche breadth and (d) mean elevation provided for
Neotropical Phlegmariurus species. R2 and P-values provided are from phylogenetic independent contrasts.
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scattered on the landscape; thus, they have often been consid-
ered habitat islands, surrounded by a ‘sea’ of tropical forest
and dry valleys (Vuilleumier, 1971; Diazgranados & Barber,
2017). We interpret the narrow ranges of many p�aramo-
dwelling Phlegmariurus as strong evidence that the recent,
rapid diversification of the P. crassus group has principally pro-
ceeded via geographical isolation among these patchily dis-
tributed habitat islands. Though the exceptional dispersal
potential of spore-bearing plants may seemingly preclude the
relatively fine-scale geographical isolation observed here in
Phlegmariurus, evidence suggests that long-distance colonization
events in ferns and lycophytes is likely the exception rather
than the norm. For example, experimental studies have indi-
cated that most spores are dispersed within a meter of the par-
ent sporophyte (Conant, 1978; Peck et al., 1990) and that
most surveyed species predominately engage in outcrossing in
the wild, limiting the possibility of establishment via dispersal
of a single spore (Soltis & Soltis, 1990; Haufler et al., 2016;
Sessa et al., 2016). Furthermore, recent phylogenetic and taxo-
nomic work has presented compelling evidence of allopatric
speciation at relatively small geographical scales in both tem-
perate (Wang et al., 2011; Metzgar et al., 2013) and tropical
(Luna-Vega et al., 2012; Ram�ırez-Barahona & Luna-Vega,
2015; Moran, 2016) taxa. Though further work is needed to
generate a robust understanding of the drivers of speciation in
tropical ferns and lycophytes, this study and earlier phyloge-
netic work on some Andean fern genera (Kreier et al., 2008;
McHenry & Barrington, 2014; S�anchez-Baracaldo & Thomas,
2014) suggests that speciations in these groups largely follow
the same patterns observed in montane flowering plant plants,
and that the recently formed and patchily distributed habitats
in the tropical Andes appear to be hotbeds of rapid diversifica-
tion in essentially all groups of organisms that occupy them.

Additional factors associated with the Andean uplift and habi-
tat availability that were not detected by our analyses almost cer-
tainly played roles in the recent diversification of Andean
Phlegmariurus and deserve further study. Foremost among these
was likely the complex history of fluctuating habitat zonation
known to have occurred in the Andes in response to cyclical
glaciation during the Quaternary (Simpson, 1975; van der Ham-
men & Cleef, 1986; Hooghiemstra & van der Hammen, 2004).
Given the dramatic topography of the high Andes and the rapid
turnover of habitats along elevational gradients in the tropics
(Janzen, 1967; Colwell et al., 2008), glacial–interglacial cycles
would have had profound impacts on habitat connectivity and
gene flow among populations of organisms in the high Andes.
During periods of glaciation, the lower limits of alpine habitats
were depressed, connecting p�aramos that had previously been iso-
lated and driving compressions of some montane forest habitats
of ≤ 55% (Hooghiemstra & van der Hammen, 2004). Forest
limits would then expand upwards and p�aramos would contract
elevationally, and again become isolated as glaciers retreated. An
important consequence of this cycle of alternating fusion and
fragmentation of alpine habitats is that populations would have
been in intermittent contact with each other, complicating the
history of divergence among then-young evolutionary lineages in,
for example, the P. crassus species group. Coupled with the slow
accumulation of reproductive isolation in pteridophytes
(Øllgaard, 1985; Hanu�sov�a et al., 2014; Rothfels et al., 2015;
Sigel, 2016), this fluctuation in habitat connectivity may explain
the weak morphological and genetic differentiation observed
among p�aramo-dwelling species of Phlegmariurus. Resolving such
dynamic, complex evolutionary scenarios is difficult (Hughes
et al., 2006, 2013) and requires larger datasets generated from
highly variable markers. Using a large nuclear dataset, Vargas
et al. (2017) demonstrated widespread introgression and
hybridization in a rapidly diversifying clade of Andean
Diplostephium (Asteraceae) that was undetected with chloroplast
and mitochondrial datasets; similar patterns were reported in a
recent paper on Lupinus (Nevado et al., 2018) These patterns of
repeated isolation and fusion of populations have been demon-
strated previously in rapidly diversifying extra-Andean groups,
such as African cichlids (Joyce et al., 2011; Genner & Turner,
2012), North American sedges (Escudero et al., 2014) and Mexi-
can frogs (Streicher et al., 2014). Application of a similar dataset
and approaches should prove illuminating for better understand-
ing the dynamics of recent diversification of Phlegmariurus and
other high Andean groups.
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